University of Hradec Králové, Faculty of Informatics and Management

Master Degree Exam Requirements – Applied Informatics

Subject:  Mathematical Methods

2013/2014

 

 

1.       Measuring uncertainty. Probability, basic definitions and rules (addition rule for elementary events, conditional probability, multiplication rule, Bayes’ Theorem).

2.       Random variable, discrete and continuous probability distributions. Most common models of distribution (for example: alternative, binomial, Poisson, uniform, normal, exponential).

3.       Statistical inference. Population and random sample, methods of sampling, sampling distribution, sampling error. Statistical point estimate, the quality of an estimate, confidence interval for mean and proportion.

4.       Principles of testing of statistical hypothesis, type I. and II. errors, hypothesis about population mean and proportion.

5.       Description of relationships between variables. Regression and correlation methods. Tests of independence for qualitative data, contingency table.

6.       Stochastic and deterministic models. Stochastic processes. Applications of stochastic models. Renewal models: renewal table and solution with the use of regular Markov chains. Markov chains and their description, regular chains, absorption chains, long – run properties of Markov chains.

7.       Modelling and simulation. Random numbers, congruent generators. Transformation random numbers to random numbers from specific distributions. The assessment of the quality of random number generators (statistical properties). 

8.       Principles of Numerical mathematics and approximation of functions. Arithmetic operations and errors in numerical computations. Interpolation by polynomials, interpolation by spline functions, least square method.

9.       Solution of nonlinear equations and numerical optimization. Bracketing method for locating roots, methods for finding roots of equations, estimation of error bounds, conditions of convergence. Minimization of function.

10.    Numerical solutions of systems of linear algebraic equations – direct and indirect methods. Gaussian elimination method, partial pivoting, triangular factorization, ill conditioning. Iterative methods.  

11.    Numerical differentiation and integration, solution of ordinary differential equations. Numerical differentiation, basic formulas. Numerical Integrations, basic and composite rules. Euler’s method and Runge-Kutta methods.

12.    Graph coloring and its application. Graph coloring, chromatic number, independent set, independence number, relation between χ(G) a α(G). Heuristic algorithms determining chromatic number and their practical applications.

13.    Searching of labyrinths and Eulerian graphs. Trémaux, Tarry, Edmonds-Johnson algorithms, mutual relations among these algorithms. Searching of Eulerian trail in Eulerian graph. Searching of the minimum number of trails containing all edges of the given graph. Chinese postman problem. Practical applications of mentioned algorithms.

 

References:

Arltová M. a kol.: Sbírka příkladů ze statistiky (Statistika A). VŠE Praha, 1997

Čermák L., Hlavička R.: Numerické metody, Akademické nakladatelství CERM, s.r.o., Brno, 2006

Demel, J.: GRAFY a jejich aplikace, Academia, Praha, 2002

Hebák P., Kahounová J.: Počet pravděpodobnosti v příkladech. Informatorium, Praha 2005.

Hindls R., Hronová S., Seger J.: Statistika pro ekonomy. Professional Publishing, Praha 2003

Kučera, L.:  Kombinatorické algoritmy. SNTL, Praha, 1989

Míka, S., Brandner, M.: Numerické metody I. a II.,  Univerzita v Plzni, 2000

Skalská H.: Aplikovaná statistika. Sbírka elektronických textů, UHK 2003

Skalská H.: Stochastické modelování. Gaudeamus, Hradec Králové, 2006

 

 

English References Equivalents:

Gentle E.J.: Random Number Generation and Monte Carlo Methods. Springer-Verlag, New York, 1998

Grinstead Ch., M., Snell J., L.: Introduction to Probability. Chance project publication, Render B., Stair R.: Quantitative Analysis for Management. Allyn and Bacon, Boston, 1994

Groebner D.F., Shannon P.W., Fry P.C., Smith K.D.: Business Statistics. A Decision Making Approach. Prentice Hall, 2005.

Hillier F.S., Lieberman G.J.: Introduction to operations research. McGraw-Hill, 2004

McClave J.T., Benson P.G., Sincich T.:  Statistics for Business and Economics. Prentice Hall, Inc., 2003

Roberts, F. S.,  Tesman, B.: Applied Combinatorics, Second Edition, Pearson Prentice Hall, Upper Saddle River, NJ, 2004